Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.31.551381

ABSTRACT

Primary differentiated human epithelial cell cultures have been widely used by researchers to study viral fitness and virus-host interactions, especially during the COVID19 pandemic. These cultures recapitulate important characteristics of the respiratory epithelium such as diverse cell type composition, polarization, and innate immune responses. However, standardization and validation of these cultures remains an open issue. In this study, two different expansion medias were evaluated and the impact on the resulting differentiated culture was determined. Use of both Airway and Ex Plus media types resulted in high quality, consistent cultures that were able to be used for these studies. Upon histological evaluation, Airway-grown cultures were more organized and had a higher proportion of basal progenitor cells while Ex Plus- grown cultures had a higher proportion terminally differentiated cell types. In addition to having different cell type proportions and organization, the two different growth medias led to cultures with altered susceptibility to infection with SARS-CoV-2 but not Influenza A virus. RNAseq comparing cultures grown in different growth medias prior to differentiation uncovered a high degree of differentially expressed genes in cultures from the same donor. RNAseq on differentiated cultures showed less variation between growth medias but alterations in pathways that control the expression of human transmembrane proteases including TMPRSS11 and TMPRSS2 were documented. Enhanced susceptibility to SARS-CoV-2 cannot be explained by altered cell type proportions alone, rather serine protease cofactor expression also contributes to the enhanced replication of SARS-CoV-2 as inhibition with camostat affected replication of an early SARS-CoV-2 variant and a Delta, but not Omicron, variant showed difference in replication efficiency between culture types. Therefore, it is important for the research community to standardize cell culture protocols particularly when characterizing novel viruses.


Subject(s)
Tumor Virus Infections , Virus Diseases , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.03.531067

ABSTRACT

The first three months of the COVID-19 pandemic was dominated by two SARS-CoV-2 lineages: A-lineages (Clade 19B) and B-lineages (Clade 19A). However, with the emergence of the Spike D614G substitution in B.1 lineages (Clade 20A), both early lineages were outcompeted and remained near-extinction from mid-2020 onwards. In early-2021, there was a re-emergence and persistence of novel A-lineage variants with substitutions in the Spike gene resembling those found in Variants of Concern (VOCs). An early A.3 variant (MD-HP00076/2020) and three A.2.5 variants (MD-HP02153/2021, MD-HP05922/2021 and CA-VRLC091/2021) were isolated and characterized for their genomic sequences, antibody neutralization, and in vitro replication. All A.2.5 isolates had five Spike mutations relative to the A.3 variant sequence: D614G, L452R, {Delta}141-143, D215A, and ins215AGY. Plaque reduction neutralization assays demonstrated that A.2.5 isolates had a 2.5 to 5-fold reduction in neutralization using contemporaneous COVID-19 convalescent plasma when compared to A.3. In vitro viral characterization in VeroE6 cell lines revealed that the A.3 isolate grew faster and spread more than A.2.5. On VeroE6-TMPRSS2 cells, significant syncytia formation was also observed with the A.2.5 isolates, however Spike cleavage efficiency did not explain these differences. In human nasal epithelial cell (hNEC) cultures, the A.2.5 isolates grew significantly faster and to higher total infectious virus titers than A.3. All A.2.5 lineage isolates grew significantly faster at 37{degrees}C than at 33{degrees}C irrespective of cell type, and to higher peak titers except compared to A.3. This suggests A.2.5's adapted to improve replication using similar mutations found in the B-lineage SARS-CoV-2 variants.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL